InterPore2025

Contribution ID: 260 Type: Oral Presentation

Oscillating Flow Leads to Sustained and Enhanced Mixing-Induced Mineral Precipitation in Porous Media

Thursday, 22 May 2025 10:20 (15 minutes)

Mixing-induced mineral precipitation significantly influences various natural and engineered processes such as carbon mineralization, aquifer recharge, and enhanced geothermal systems. Traditionally, this process has been viewed as self-limiting due to the formation of a thin precipitate layer along the mixing interface, which inhibits further fluid mixing and subsequent precipitation [1]. However, our recent work shows that fluid inertia can significantly enhance mixing-induced precipitation [2]. In this study, we introduce a novel mechanism whereby oscillatory flow sustains and dramatically amplifies mixing-induced mineral precipitation in porous media, even under creeping flow conditions.

We performed microfluidic experiments and pore-network modeling to explore the impact of oscillating flow on mixing-induced mineral precipitation in porous media. Barium chloride and sodium sulfate solutions were co-injected into porous microfluidic chips at an oscillating injection rate, maintaining a constant total flow rate and a 10% flow rate difference between the two solutions. The flow rate between the two inlets alternates every 30 minutes, ensuring periodic flow rate oscillations. Precipitation dynamics were captured in real-time using an inverted fluorescence microscope with brightfield imaging, while fluid mixing was characterized through fluorescence imaging. Additionally, X-ray micro-CT scans provided detailed 3D morphology and spatial distribution of the precipitated minerals. Our results demonstrate that oscillating flow conditions prevents the formation of a mixing barrier and actively enhances transverse precipitation across the porous media. As the flow oscillates, precipitation continuously expands transversely, resulting in a broad precipitation zone with porous precipitates. This is in contrast to the thin, dense precipitation layer formed under steady flow conditions. X-ray micro-CT images confirm that the precipitates exhibit microporosity, resulting in dual porosity and a heterogeneous permeability field. These experimental findings align closely with the pore-network modeling results, validating the observed phenomena.

This study highlights the crucial role of flow conditions in controlling spatiotemporal dynamics and patterns of mixing-induced precipitation in porous media. These findings have important implications for various natural and engineered processes where understanding and control of mineral precipitation is critical.

Country

USA

Acceptance of the Terms & Conditions

Click here to agree

Student Awards

Water & Porous Media Focused Abstracts

References

[1] Zhang, C., Dehoff, K., Hess, N., Oostrom, M., Wietsma, T. W., Valocchi, A. J., ... & Werth, C. J. (2010). Pore-scale study of transverse mixing induced CaCO3 precipitation and permeability reduction in a model subsurface sedimentary system. Environmental science & technology, 44(20), 7833-7838. [2] Yang, W., Chen, M.A., Lee, S.H. and Kang, P.K., 2024. Fluid inertia controls mineral precipitation and clogging in pore to network-scale flows. Proceedings of the National Academy of Sciences, 121(28), p.e2401318121.

Primary authors: YANG, Weipeng (University of Minnesota); SZAWEŁŁO, Tomasz (University of Warsaw); SZYMCZAK, Piotr (University of Warsaw); KANG, Peter (University of Minnesota)

Presenter: YANG, Weipeng (University of Minnesota)

Session Classification: MS25

Track Classification: (MS25) Advances in Carbon Mineralization: Unveiling Multiscale Geo-processes and Coupled Mechanisms