InterPore2025

Contribution ID: 276

Type: Poster Presentation

FE-SEM observation of gypsum precipitation in wellbore cement exposed to CO2 under geologic carbon storage conditions

Wellbore cement serves as a critical barrier to prevent the migration of CO2 through the wellbore and to the surface in CO2 geological storage sites. However, the cement may exhibit chemical instability under CO2-rich conditions. This research examines the changes in the pore structure of reaction zones within wellbore cement samples that have been subjected to a CO2-rich solution equilibrated with 17 MPa supercritical CO2 for a period of 14 days. Utilizing sophisticated characterization techniques such as Field Emission Scanning Electron Microscopy (FE-SEM), Quantitative Evaluation of Minerals by Scanning Electron Microscopy (QEM-SCAN), and Micro-computed Tomography (micro-CT), a novel mechanism of CO2-cement interaction has been discovered and elucidated. This mechanism involves the filling of nanopores within the cement matrix by gypsum. Gypsum formation is attributed to the release of SO4^2- ions from ettringite (AFt) and monosulfate (AFm) phases, which is induced by a reduction in pH. Based on these experimental findings, an improved CO2-cement reaction model has been developed, incorporating four distinct reaction zones. This model offers a comprehensive framework for understanding the spatial and temporal distribution of minerals in cement resulting from high-pressure and high-concentration CO2-cement interactions. This study indicates that the primary damage caused by high-pressure CO2 corrosion occurs in the outermost region of the cement. The inner region of the cement retains its structural integrity due to the filling of nanopores by gypsum.

Country

China

Acceptance of the Terms & Conditions

Click here to agree

Student Awards

Water & Porous Media Focused Abstracts

References

Primary author: Prof. WANG, Yan (Institute of Rock and Soil Mechanics, Chinese Academy of Sciences)

Co-authors: Prof. ZHANG, Liwei (Institute of Rock and Soil Mechanics, Chinese Academy of Sciences); Prof. GAN, Manguang (Institute of Rock and Soil Mechanics, Chinese Academy of Sciences); YIN, Yue (Institute of Rock and Soil Mechanics, Chinese Academy of Science); Dr WANG, Hanwen (Institute of Rock and Soil Mechanics, Chinese Academy of Sciences); BLUNT, Martin (Imperial College London)

Presenter: Prof. ZHANG, Liwei (Institute of Rock and Soil Mechanics, Chinese Academy of Sciences)

Session Classification: Poster

Track Classification: (MS10) Advances in imaging porous media: techniques, software and case

studies