InterPore2025

Contribution ID: 539 Type: Oral Presentation

Mechanisms of interface jumps, pinning and hysteresis during imbibition and drainage along an isolated pore

Monday, 19 May 2025 11:40 (15 minutes)

We study experimentally and numerically the mechanisms of interfacial jumps, pinning and capillary hysteresis along an elementary pore. To this end, we analyze quasi-static fluid imbibition and drainage cycles in a capillary tube with conical constrictions (ink-bottle). Depending on the slope of the conical section, we observe a range of interfacial behaviors, including capillary jumps, and interface pinning during both imbibition and drainage, which give rise to capillary hysteresis, that is, history dependence of the interface position. A theoretical model based on pressure balance at the interface captures the full spectrum of behaviors in terms of the pore geometry, contact angle and surface tension.

Country

Spain

Acceptance of the Terms & Conditions

Click here to agree

Student Awards

I would like to submit this presentation into the InterPore Journal Student Paper Award.

Water & Porous Media Focused Abstracts

References

Primary author: NEPAL, Animesh (Institute of Environmental Assessment and Water Research (IDAEA-C-SIC))

Co-authors: LUNATI, Ivan (Empa); ORTÍN, Jordi (Universitat de Barcelona); HIDALGO, Juan J. (IDAEA-C-SIC); DENTZ, Marco (IDAEA-CSIC)

Presenter: NEPAL, Animesh (Institute of Environmental Assessment and Water Research (IDAEA-CSIC))

Session Classification: MS09

Track Classification: (MS09) Pore-scale modelling